## Matrix Differentiation

# CS5240 Theoretical Foundations in Multimedia 

Leow Wee Kheng<br>Department of Computer Science<br>School of Computing<br>National University of Singapore

## Linear Fitting Revisited

Linear fitting solves this problem:
Given $n$ data points $\mathbf{p}_{i}=\left[\begin{array}{lll}x_{i 1} & \cdots & x_{i m}\end{array}\right]^{\top}, 1 \leq i \leq n$, and their corresponding values $v_{i}$, find a linear function $f$ that minimizes the error

$$
\begin{equation*}
E=\sum_{i=1}^{n}\left(f\left(\mathbf{p}_{i}\right)-v_{i}\right)^{2} \tag{1}
\end{equation*}
$$

The linear function $f\left(\mathbf{p}_{i}\right)$ has the form

$$
\begin{equation*}
f(\mathbf{p})=f\left(x_{1}, \ldots, x_{m}\right)=a_{1} x_{1}+\cdots+a_{m} x_{m}+a_{m+1} \tag{2}
\end{equation*}
$$

The data points are organized into a matrix equation

$$
\begin{equation*}
\mathbf{D} \mathbf{a}=\mathbf{v} \tag{3}
\end{equation*}
$$

where

$$
\mathbf{D}=\left[\begin{array}{cccc}
x_{11} & \cdots & x_{1 m} & 1  \tag{4}\\
\vdots & \ddots & \vdots & \vdots \\
x_{n 1} & \cdots & x_{n m} & 1
\end{array}\right], \quad \mathbf{a}=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{m} \\
a_{m+1}
\end{array}\right], \quad \text { and } \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]
$$

The solution of Eq. 3 is

$$
\begin{equation*}
\mathbf{a}=\left(\mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{D}^{\top} \mathbf{v} \tag{5}
\end{equation*}
$$

Denote each row of $\mathbf{D}$ as $\mathbf{d}_{i}^{\top}$. Then,

$$
\begin{equation*}
E=\sum_{i=1}^{n}\left(\mathbf{d}_{i}^{\top} \mathbf{a}-v_{i}\right)^{2}=\|\mathbf{D} \mathbf{a}-\mathbf{v}\|^{2} \tag{6}
\end{equation*}
$$

So, linear least squares problem can be described very compactly as

$$
\begin{equation*}
\min _{\mathbf{a}}\|\mathbf{D} \mathbf{a}-\mathbf{v}\|^{2} \tag{7}
\end{equation*}
$$

To show that the solution in Eq. 5 minimizes error $E$, need to differentiate $E$ with respect to a and set it to zero:

$$
\begin{equation*}
\frac{d E}{d \mathbf{a}}=0 \tag{8}
\end{equation*}
$$

How to do this differentiation?

The obvious (but hard) way:

$$
\begin{equation*}
E=\sum_{i=1}^{n}\left(\sum_{j=1}^{m} a_{j} x_{i j}+a_{m+1}-v_{i}\right)^{2} \tag{9}
\end{equation*}
$$

Expand equation explicitly giving

$$
\frac{\partial E}{\partial a_{k}}= \begin{cases}2 \sum_{i=1}^{n}\left(\sum_{j=1}^{m} a_{j} x_{i j}+a_{m+1}-v_{i}\right) x_{i k}, & \text { for } k \neq m+1 \\ 2 \sum_{i=1}^{n}\left(\sum_{j=1}^{m} a_{j} x_{i j}+a_{m+1}-v_{i}\right), & \text { for } k=m+1\end{cases}
$$

Then, set $\partial E / \partial a_{k}=0$ and solve for $a_{k}$.
This is slow, tedious and error prone!

Which one do you like to be?


## At least like these?



## Matrix Derivatives

There are 6 common types of matrix derivatives:

| Type | Scalar | Vector | Matrix |
| :---: | :---: | :---: | :---: |
| Scalar | $\frac{\partial y}{\partial x}$ | $\frac{\partial \mathbf{y}}{\partial x}$ | $\frac{\partial \mathbf{Y}}{\partial x}$ |
| Vector | $\frac{\partial y}{\partial \mathbf{x}}$ | $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ |  |
| Matrix | $\frac{\partial y}{\partial \mathbf{X}}$ |  |  |

## Derivatives by Scalar

Numerator Layout Notation

$$
\begin{gathered}
\frac{\partial y}{\partial x} \\
\frac{\partial \mathbf{y}}{\partial x}=\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial x} \\
\vdots \\
\frac{\partial y_{m}}{\partial x}
\end{array}\right] \\
\frac{\partial \mathbf{Y}}{\partial x}=\left[\begin{array}{ccc}
\frac{\partial y_{11}}{\partial x} & \cdots & \frac{\partial y_{1 n}}{\partial x} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_{m 1}}{\partial x} & \cdots & \frac{\partial y_{m n}}{\partial x}
\end{array}\right]
\end{gathered}
$$

## Derivatives by Vector

Numerator Layout Notation

$$
\begin{gathered}
\frac{\partial y}{\partial \mathbf{x}}=\left[\begin{array}{ccc}
\frac{\partial y}{\partial x_{1}} & \cdots & \frac{\partial y}{\partial x_{n}}
\end{array}\right] \\
\frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left[\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right] \\
\equiv \frac{\partial \mathbf{y}}{\partial \mathbf{x}^{\top}}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial y}{\partial \mathbf{x}}=\left[\begin{array}{c}
\frac{\partial y}{\partial x_{1}} \\
\vdots \\
\frac{\partial y}{\partial x_{n}}
\end{array}\right] \\
\frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left[\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{1}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_{1}}{\partial x_{n}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right] \\
\equiv \frac{\partial \mathbf{y}^{\top}}{\partial \mathbf{x}}
\end{gathered}
$$

## Derivative by Matrix

Numerator Layout Notation

$$
\begin{array}{r}
\frac{\partial y}{\partial \mathbf{X}}=\left[\begin{array}{ccc}
\frac{\partial y}{\partial x_{11}} & \cdots & \frac{\partial y}{\partial x_{m 1}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y}{\partial x_{1 n}} & \cdots & \frac{\partial y}{\partial x_{m n}}
\end{array}\right] \quad \frac{\partial y}{\partial \mathbf{X}}=\left[\begin{array}{ccc}
\frac{\partial y}{\partial x_{11}} & \cdots & \frac{\partial y}{\partial x_{1 n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y}{\partial x_{m 1}} & \cdots & \frac{\partial y}{\partial x_{m n}}
\end{array}\right] \\
\equiv \frac{\partial y}{\partial \mathbf{X}^{\top}}
\end{array}
$$

Denominator Layout Notation

## Pictorial Representation



## Caution

- Most books and papers don't state which convention they use.
- Reference [2] uses both conventions but clearly differentiate them.

$$
\begin{array}{rr}
\frac{\partial y}{\partial \mathbf{x}^{\top}}=\left[\begin{array}{ccc}
\frac{\partial y}{\partial x_{1}} & \cdots & \frac{\partial y}{\partial x_{n}}
\end{array}\right] & \frac{\partial y}{\partial \mathbf{x}}=\left[\begin{array}{c}
\frac{\partial y}{\partial x_{1}} \\
\vdots \\
\frac{\partial y}{\partial x_{n}}
\end{array}\right] \\
\frac{\partial \mathbf{y}}{\partial \mathbf{x}^{\top}}=\left[\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right] \quad \frac{\partial \mathbf{y}^{\top}}{\partial \mathbf{x}}=\left[\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{1}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_{1}}{\partial x_{n}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]
\end{array}
$$

- It is best not to mix the two conventions in your equations.
- We adopt numerator layout notation.


## Commonly Used Derivatives

Here, scalar $a$, vector a and matrix $\mathbf{A}$ are not functions of $x$ and $\mathbf{x}$.
(C1) $\quad \frac{d \mathbf{a}}{d x}=\mathbf{0} \quad$ (column matrix)
(C2) $\quad \frac{d a}{d \mathbf{x}}=\mathbf{0}^{\top} \quad$ (row matrix)
(C3) $\frac{d a}{d \mathbf{X}}=\mathbf{0}^{\top} \quad$ (matrix)
(C4) $\quad \frac{d \mathbf{a}}{d \mathbf{x}}=\mathbf{0} \quad$ (matrix)
(C5) $\quad \frac{d \mathbf{x}}{d \mathbf{x}}=\mathbf{I}$
(C6) $\quad \frac{d \mathbf{a}^{\top} \mathbf{x}}{d \mathbf{x}}=\frac{d \mathbf{x}^{\top} \mathbf{a}}{d \mathbf{x}}=\mathbf{a}^{\top}$
(C7) $\frac{d \mathbf{x}^{\top} \mathbf{x}}{d \mathbf{x}}=2 \mathbf{x}^{\top}$
(C8) $\quad \frac{d\left(\mathbf{x}^{\top} \mathbf{a}\right)^{2}}{d \mathbf{x}}=2 \mathbf{x}^{\top} \mathbf{a} \mathbf{a}^{\top}$
(C9) $\frac{d \mathbf{A x}}{d \mathbf{x}}=\mathbf{A}$
(C10) $\quad \frac{d \mathbf{x}^{\top} \mathbf{A}}{d \mathbf{x}}=\mathbf{A}^{\top}$
(C11) $\quad \frac{d \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{d \mathbf{x}}=\mathbf{x}^{\top}\left(\mathbf{A}+\mathbf{A}^{\top}\right)$

## Math Notation

We represent a vector $\mathbf{x}$ as a column matrix

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]
$$

Its transpose $\mathbf{x}^{\top}$ is a row matrix

$$
\mathbf{x}^{\top}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{m}
\end{array}\right] .
$$

Consider two vectors $\mathbf{x}$ and $\mathbf{y}$ with the same number of components. Their inner product $\mathbf{x}^{\top} \mathbf{y}$ is actually a $1 \times 1$ matrix:

$$
\mathbf{x}^{\top} \mathbf{y}=[s]
$$

where

$$
s=\sum_{i=1}^{m} x_{i} y_{i}
$$

For notational inconvenience, we usually drop the matrix and regard the inner product as a scalar, i.e.,

$$
\mathbf{x}^{\top} \mathbf{y}=\sum_{i=1}^{m} x_{i} y_{i}
$$

## Derivatives of Scalar by Scalar

(SS1) $\frac{\partial(u+v)}{\partial x}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}$
$(\mathrm{SS} 2) \quad \frac{\partial u v}{\partial x}=u \frac{\partial v}{\partial x}+v \frac{\partial u}{\partial x} \quad($ product rule)
(SS3) $\frac{\partial g(u)}{\partial x}=\frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial x} \quad($ chain rule)
(SS4) $\frac{\partial f(g(u))}{\partial x}=\frac{\partial f(g)}{\partial g} \frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial x} \quad$ (chain rule)

## Derivatives of Vector by Scalar

(VS1) $\quad \frac{\partial a \mathbf{u}}{\partial x}=a \frac{\partial \mathbf{u}}{\partial x}$
where $a$ is not a function of $x$.
$(\mathrm{VS} 2) \quad \frac{\partial \mathbf{A u}}{\partial x}=\mathbf{A} \frac{\partial \mathbf{u}}{\partial x}$
where $\mathbf{A}$ is not a function of $x$.
(VS3) $\frac{\partial \mathbf{u}^{\top}}{\partial x}=\left(\frac{\partial \mathbf{u}}{\partial x}\right)^{\top}$
$(\mathrm{VS} 4) \quad \frac{\partial(\mathbf{u}+\mathbf{v})}{\partial x}=\frac{\partial \mathbf{u}}{\partial x}+\frac{\partial \mathbf{v}}{\partial x}$
(VS5) $\quad \frac{\partial \mathbf{g}(\mathbf{u})}{\partial x}=\frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial x} \quad$ (chain rule)
with consistent matrix layout.
(VS6) $\quad \frac{\partial \mathbf{f}(\mathbf{g}(\mathbf{u}))}{\partial x}=\frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial x} \quad$ (chain rule)
with consistent matrix layout.

## Derivatives of Matrix by Scalar

$(\mathrm{MS} 1) \quad \frac{\partial a \mathbf{U}}{\partial x}=a \frac{\partial \mathbf{U}}{\partial x}$
where $a$ is not a function of $x$.
$(\mathrm{MS} 2) \quad \frac{\partial \mathbf{A U B}}{\partial x}=\mathbf{A} \frac{\partial \mathbf{U}}{\partial x} \mathbf{B}$
where $\mathbf{A}$ and $\mathbf{B}$ are not functions of $x$.
$(\mathrm{MS} 3) \quad \frac{\partial(\mathbf{U}+\mathbf{V})}{\partial x}=\frac{\partial \mathbf{U}}{\partial x}+\frac{\partial \mathbf{V}}{\partial x}$
$(\mathrm{MS} 4) \quad \frac{\partial \mathbf{U V}}{\partial x}=\mathbf{U} \frac{\partial \mathbf{V}}{\partial x}+\frac{\partial \mathbf{U}}{\partial x} \mathbf{V} \quad$ (product rule)

## Derivatives of Scalar by Vector

(SV1) $\quad \frac{\partial a u}{\partial \mathbf{x}}=a \frac{\partial u}{\partial \mathbf{x}}$
where $a$ is not a function of $\mathbf{x}$.
(SV2) $\frac{\partial(u+v)}{\partial \mathbf{x}}=\frac{\partial u}{\partial \mathbf{x}}+\frac{\partial v}{\partial \mathbf{x}}$
$(\mathrm{SV} 3) \quad \frac{\partial u v}{\partial \mathbf{x}}=u \frac{\partial v}{\partial \mathbf{x}}+v \frac{\partial u}{\partial \mathbf{x}} \quad($ product rule)
(SV4) $\frac{\partial g(u)}{\partial \mathbf{x}}=\frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial \mathbf{x}} \quad$ (chain rule)
(SV5) $\quad \frac{\partial f(g(u))}{\partial \mathbf{x}}=\frac{\partial f(g)}{\partial g} \frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial \mathbf{x}} \quad$ (chain rule)
(SV6) $\quad \frac{\partial \mathbf{u}^{\top} \mathbf{v}}{\partial \mathbf{x}}=\mathbf{u}^{\top} \frac{\partial \mathbf{v}}{\partial \mathbf{x}}+\mathbf{v}^{\top} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \quad$ (product rule) where $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$ and $\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$ are in numerator layout.
(SV7) $\frac{\partial \mathbf{u}^{\top} \mathbf{A} \mathbf{v}}{\partial \mathbf{x}}=\mathbf{u}^{\top} \mathbf{A} \frac{\partial \mathbf{v}}{\partial \mathbf{x}}+\mathbf{v}^{\top} \mathbf{A}^{\top} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \quad$ (product rule) where $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$ and $\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$ are in numerator layout, and $\mathbf{A}$ is not a function of $\mathbf{x}$.

## Derivatives of Scalar by Matrix

(SM1) $\quad \frac{\partial a u}{\partial \mathbf{X}}=a \frac{\partial u}{\partial \mathbf{X}}$
where $a$ is not a function of $\mathbf{X}$.
(SM2) $\quad \frac{\partial(u+v)}{\partial \mathbf{X}}=\frac{\partial u}{\partial \mathbf{X}}+\frac{\partial v}{\partial \mathbf{X}}$
$(\mathrm{SM} 3) \quad \frac{\partial u v}{\partial \mathbf{X}}=u \frac{\partial v}{\partial \mathbf{X}}+v \frac{\partial u}{\partial \mathbf{X}} \quad$ (product rule)
$(\mathrm{SM} 4) \quad \frac{\partial g(u)}{\partial \mathbf{X}}=\frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial \mathbf{X}} \quad$ (chain rule)
(SM5) $\quad \frac{\partial f(g(u))}{\partial \mathbf{X}}=\frac{\partial f(g)}{\partial g} \frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial \mathbf{X}} \quad$ (chain rule)

## Derivatives of Vector by Vector

(VV1) $\quad \frac{\partial a \mathbf{u}}{\partial \mathbf{x}}=a \frac{\partial \mathbf{u}}{\partial \mathbf{x}}+\mathbf{u} \frac{\partial a}{\partial \mathbf{x}} \quad$ (product rule)
$(\mathrm{VV} 2) \quad \frac{\partial \mathbf{A u}}{\partial \mathbf{x}}=\mathbf{A} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$
where $\mathbf{A}$ is not a function of $\mathbf{x}$.
(VV3) $\frac{\partial(\mathbf{u}+\mathbf{v})}{\partial \mathbf{x}}=\frac{\partial \mathbf{u}}{\partial \mathbf{x}}+\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$
(VV4) $\quad \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{x}}=\frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \quad$ (chain rule)
(VV5) $\quad \frac{\partial \mathbf{f}(\mathbf{g}(\mathbf{u}))}{\partial \mathbf{x}}=\frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \quad$ (chain rule)

## Notes on Denominator Layout

In some cases, the results of denominator layout are the transpose of those of numerator layout. Moreover, the chain rule for denominator layout goes from right to left instead of left to right.

Numerator Layout Notation Denominator Layout Notation

$$
\begin{array}{ccc}
\text { (C7) } & \frac{d \mathbf{a}^{\top} \mathbf{x}}{d \mathbf{x}}=\mathbf{a}^{\top} & \frac{d \mathbf{a}^{\top} \mathbf{x}}{d \mathbf{x}}=\mathbf{a} \\
\text { (C11) } & \frac{d \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{d \mathbf{x}}=\mathbf{x}^{\top}\left(\mathbf{A}+\mathbf{A}^{\top}\right) & \frac{d \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{d \mathbf{x}}=\left(\mathbf{A}+\mathbf{A}^{\top}\right) \mathbf{x} \\
(\mathrm{VV} 5) & \frac{\partial \mathbf{f}(\mathbf{g}(\mathbf{u}))}{\partial \mathbf{x}}=\frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} & \frac{\partial \mathbf{f}(\mathbf{g}(\mathbf{u}))}{\partial \mathbf{x}}=\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}}
\end{array}
$$

## Derivations of Derivatives

(C6) $\quad \frac{d \mathbf{a}^{\top} \mathbf{x}}{d \mathbf{x}}=\frac{d \mathbf{x}^{\top} \mathbf{a}}{d \mathbf{x}}=\mathbf{a}^{\top}$
(The not-so-hard way)
Let $s=\mathbf{a}^{\top} \mathbf{x}=a_{1} x_{1}+\cdots+a_{n} x_{n}$. Then, $\frac{\partial s}{\partial x_{i}}=a_{i}$. So, $\frac{d s}{d \mathbf{x}}=\mathbf{a}^{\top}$.
(The easier way)
Let $s=\mathbf{a}^{\top} \mathbf{x}=\sum_{i} a_{i} x_{i}$. Then, $\frac{\partial s}{\partial x_{i}}=a_{i}$. So, $\frac{d s}{d \mathbf{x}}=\mathbf{a}^{\top}$.
(C7) $\frac{d \mathbf{x}^{\top} \mathbf{x}}{d \mathbf{x}}=2 \mathbf{x}^{\top}$
Let $s=\mathbf{x}^{\top} \mathbf{x}=\sum_{i} x_{i}^{2}$. Then, $\frac{\partial s}{\partial x_{i}}=2 x_{i}$. So, $\frac{d s}{d \mathbf{x}}=2 \mathbf{x}^{\top}$.
(C8) $\quad \frac{d\left(\mathbf{x}^{\top} \mathbf{a}\right)^{2}}{d \mathbf{x}}=2 \mathbf{x}^{\top} \mathbf{a} \mathbf{a}^{\top}$
Let $s=\mathbf{x}^{\top} \mathbf{a}$. Then, $\frac{\partial s^{2}}{\partial x_{i}}=2 s \frac{\partial s}{\partial x_{i}}=2 s a_{i}$. So, $\frac{d s^{2}}{d \mathbf{x}}=2 \mathbf{x}^{\top} \mathbf{a} \mathbf{a}^{\top}$.
(C9) $\quad \frac{d \mathbf{A} \mathbf{x}}{d \mathbf{x}}=\mathbf{A}$
(The hard way)
$\mathbf{A} \mathbf{x}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]=\left[\begin{array}{c}a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\ \vdots \\ a_{n 1} x_{1}+\cdots+a_{n n} x_{n}\end{array}\right]$.
(The easy way)
Let $\mathbf{s}=\mathbf{A x}$. Then, $s_{i}=\sum_{j} a_{i j} x_{j}$, and $\frac{\partial s_{i}}{\partial x_{j}}=a_{i j}$. So, $\frac{d \mathbf{s}}{d \mathbf{x}}=\mathbf{A}$.
(C10) $\quad \frac{d \mathbf{x}^{\top} \mathbf{A}}{d \mathbf{x}}=\mathbf{A}^{\top}$
Let $\mathbf{y}^{\top}=\mathbf{x}^{\top} \mathbf{A}$, and $\mathbf{a}_{j}$ denote the $j$-th column of $\mathbf{A}$. Then, $y_{i}=\mathbf{x}^{\top} \mathbf{a}_{j}$.
Applying (C6) yields $\frac{d y_{i}}{d \mathbf{x}}=\mathbf{a}_{j}^{\top}$. So, $\frac{d \mathbf{y}^{\top}}{d \mathbf{x}}=\mathbf{A}^{\top}$.
(C11) $\quad \frac{d \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{d \mathbf{x}}=\mathbf{x}^{\top}\left(\mathbf{A}+\mathbf{A}^{\top}\right)$
Apply (SV6) to $\frac{d \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{d \mathbf{x}}$ and obtain $\mathbf{x}^{\top} \frac{d \mathbf{A} \mathbf{x}}{d \mathbf{x}}+(\mathbf{A} \mathbf{x})^{\top} \frac{d \mathbf{x}}{d \mathbf{x}}$,
Next, apply (C9) to the first part of the sum, and obtain $\mathbf{x}^{\top} \mathbf{A}+(\mathbf{A x})^{\top}$, which is $\mathbf{x}^{\top}\left(\mathbf{A}+\mathbf{A}^{\top}\right)$.
(Need to prove SV6-Homework.)

## Linear Fitting Revisited

Now, let us show that the solution

$$
\mathbf{a}=\left(\mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{D}^{\top} \mathbf{v}
$$

minimizes error $E$

$$
E=\sum_{i=1}^{n}\left(\mathbf{d}_{i}^{\top} \mathbf{a}-v_{i}\right)^{2}=\|\mathbf{D a}-\mathbf{v}\|^{2}
$$

Proof:

$$
\begin{aligned}
E=\|\mathbf{D a}-\mathbf{v}\|^{2} & =(\mathbf{D a}-\mathbf{v})^{\top}(\mathbf{D a}-\mathbf{v}) \\
& =\left(\mathbf{a}^{\top} \mathbf{D}^{\top}-\mathbf{v}^{\top}\right)(\mathbf{D a}-\mathbf{v}) \\
& =\mathbf{a}^{\top} \mathbf{D}^{\top} \mathbf{D a}-\mathbf{a}^{\top} \mathbf{D}^{\top} \mathbf{v}-\mathbf{v}^{\top} \mathbf{D} \mathbf{a}+\mathbf{v}^{\top} \mathbf{v}
\end{aligned}
$$

$$
E=\mathbf{a}^{\top} \mathbf{D}^{\top} \mathbf{D a}-\mathbf{a}^{\top} \mathbf{D}^{\top} \mathbf{v}-\mathbf{v}^{\top} \mathbf{D} \mathbf{a}+\mathbf{v}^{\top} \mathbf{v} .
$$

Apply (C11), (C6), (C9) and (C2) to the four terms.

$$
\begin{aligned}
\frac{d E}{d \mathbf{a}} & =\mathbf{a}^{\top}\left(\mathbf{D}^{\top} \mathbf{D}+\mathbf{D}^{\top} \mathbf{D}\right)-\left(\mathbf{D}^{\top} \mathbf{v}\right)^{\top}-\mathbf{v}^{\top} \mathbf{D}+\mathbf{0} \\
& =2 \mathbf{a}^{\top} \mathbf{D}^{\top} \mathbf{D}-2 \mathbf{v}^{\top} \mathbf{D}
\end{aligned}
$$

Set $d E / d \mathbf{a}=0$ and obtain

$$
\begin{aligned}
2 \mathbf{a}^{\top} \mathbf{D}^{\top} \mathbf{D}-2 \mathbf{v}^{\top} \mathbf{D} & =0 \\
\mathbf{a}^{\top} \mathbf{D}^{\top} \mathbf{D} & =\mathbf{v}^{\top} \mathbf{D}
\end{aligned}
$$

Transpose both sides of the equation and get

$$
\begin{aligned}
\mathbf{D}^{\top} \mathbf{D} \mathbf{a} & =\mathbf{D}^{\top} \mathbf{v} \\
\mathbf{a} & =\left(\mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{D}^{\top} \mathbf{v} .
\end{aligned}
$$

## Summary

- Matrix calculus studies calculus of matrices.
- There are 6 common derivatives of matrices.
- There are 2 competing notational convention: numerator layout notation vs. denominator layout convention.
- We adopt numerator layout notation.
- Do not mix the two conventions in your equations.
- Use matrix differentiation to prove that pseudo-inverse minimizes sum square error.



## Probing Questions

- Is there a simple way to double check that the derivative result makes sense?
- Why do we use sum square error for linear fitting? Can we use other forms of errors?
- Six common types of matrix derivatives are discussed. Three other types are left out. Can we work out the other derivatives, e.g., derivatives of vector by matrix or matrix by matrix?


## Homework

1. What are the key concepts that you have learned?
2. Prove the product rule SV3 using scalar product rule SS2.
(SV3) $\quad \frac{\partial u v}{\partial \mathbf{x}}=u \frac{\partial v}{\partial \mathbf{x}}+v \frac{\partial u}{\partial \mathbf{x}}$
3. Prove the product rule SV6 using SV3.
(SV6) $\quad \frac{\partial \mathbf{u}^{\top} \mathbf{v}}{\partial \mathbf{x}}=\mathbf{u}^{\top} \frac{\partial \mathbf{v}}{\partial \mathbf{x}}+\mathbf{v}^{\top} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$ where $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$ and $\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$ are in numerator layout.
4. Q2 of AY2015/16 Final Evaluation.

## References

1. J. E. Gentle, Matrix Algebra: Theory, Computations, and Applications in Statistics, Springer, 2007.
2. H. Lütkepohl, Handbook of Matrices, John Wiley \& Sons, 1996.
3. K. B. Petersen and M. S. Pedersen, The Matrix Cookbook, 2012. www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
4. Wikipedia, Matrix Calculus. en.wikipedia.org/wiki/Matrix_calculus
